The symmetry energy density and isovector giant resonances energies in ${ }^{208} \mathbf{P b}$

M.R. Anders and S. Shlomo

In this work [1], we have carried out fully self-consistent Hartree-Fock (HF)-based random phase approximation (RPA) calculations of the strength functions $\mathrm{S}(\mathrm{E})$ and centroid energies $\mathrm{E}_{\text {CEN }}$ of isovector $(T=1)$ giant resonances of multipolarities $L=0-3$ in ${ }^{208} \mathrm{~Pb}$ using a wide range of 34 commonly employed Skyrme type nucleon-nucleon effective interactions. We determined the sensitivities of $\mathrm{E}_{\mathrm{CEN}}$ to parameters of the symmetry energy density of nuclear matter (NM), associated with the Skyrme interactions.

The equation of state (EOS) of asymmetric NM, with proton density, ρ_{p}, and neutron density, ρ_{n}, can be approximated by

$$
\begin{equation*}
\mathrm{E}\left[\rho_{\mathrm{p}}, \rho_{\mathrm{n}}\right]=\mathrm{E}_{0}[\rho]+\mathrm{E}_{\mathrm{sym}}[\rho]\left(\frac{\rho_{\mathrm{n}}-\rho_{\mathrm{p}}}{\rho}\right)^{2} \tag{1}
\end{equation*}
$$

where $E_{0}[\rho]$ is the energy of symmetric $N M$ at matter density, ρ, and $E_{\text {sym }}[\rho]$ is the symmetry energy, approximated as

$$
\begin{equation*}
\mathrm{E}_{\text {sym }}[\rho]=\mathrm{J}+\frac{1}{3} \mathrm{~L}\left(\frac{\rho-\rho_{0}}{\rho_{0}}\right)+\frac{1}{18} \mathrm{~K}_{\text {sym }}\left(\frac{\rho-\rho_{0}}{\rho_{0}}\right)^{2} \tag{2}
\end{equation*}
$$

where $J=E_{\text {sym }}\left[\rho_{0}\right]$ is the symmetry energy at saturation density, $\rho_{0}, L=\left.3 \rho_{0} \frac{\partial \mathrm{E}_{\text {sym }}}{\partial \rho}\right|_{\rho_{0}}$, and $\mathrm{K}_{\text {sym }}=$ $\left.9 \rho_{0} \frac{\partial^{2} \mathrm{E}_{\text {sym }}}{\partial \rho^{2}}\right|_{\rho_{0}}$.

Figs. 1 and 2 show the comparison between the calculated and experimental results for the centroid energies with L and $K_{\text {sym }}$, respectively. It is clearly seen that, contrary to statements in the literature, a very weak correlation exist between the centroid energies of the isovector giant resonances and L or $\mathrm{K}_{\text {sym }}$. Similar results were obtained for J .

FIG. 1. Comparison of experimental data of the IVGMR (a), IVGDR (b), and IVGQR (c) centroid energies of ${ }^{208} \mathrm{~Pb}$, shown as the regions between the dashed lines, with the results of fully self-consistent HF based RPA calculations (full circles) obtained using the Skyrme interactions, plotted vs. L. Calculated IVGOR (d) centroid energies are also shown.

FIG. 2. Same as Fig. 1 for $\mathrm{K}_{\text {sym }}$.
[1] M.R. Anders and S. Shlomo, (to be published).

